Precalculus Unit 8 Test Review

Sequences & Series

- 1. Determine the 65th term for the sequence: 63, 59, 55, 51...
- 2. Determine the common difference for the sequence: $\frac{2}{5}$, $\frac{16}{15}$, $\frac{26}{15}$, $\frac{12}{5}$
- 21:8 3. The ninth term of an arithmetic sequence is 10.6 and the first term is 5. Find the 25^{th} term.
- 10 1 38 4. Find the sum of the arithmetic series: -9-5-1+3+...+283
- 5. A stack of books is on display in a bookstore. There are 50 books on the first layer, 47 in the second layer, 44 in the third, and so on. There are 17 layers of books.
 - a. How many books are in the stack? 442
 - b. How many books are in layers 8 through layer 14 (inclusively)? 140
 - c. How many books are in row 7? 32,
- 6. Find the 9th term in the sequence 1200, 300, 75, 18.75,... $\frac{75}{44006}$

7.
$$\sum_{n=1}^{7} 243 \left(-\frac{1}{3}\right)^{n-1} = \frac{547}{3}$$
 8. $\sum_{n=1}^{37} \left(4n+3\right) = 2923$ 9. $\sum_{n=8}^{48} -4n = -4592$

8.
$$\sum_{n=1}^{37} (4n+3) = 2923$$

9.
$$\sum_{n=8}^{48} -4n = -4592$$

- 10. Which term in the geometric sequence 4, 12, 36, ..., is 708588?
- 11. Write a recursive formula for the sequence 8, 10, 12, 14, 16,... $a_n = a_{n-1} + a_n$
- a) $\sum_{n=1}^{n} (2+3(n-1))$ d) $\sum_{n=1}^{\infty} 20(\frac{1}{2})^{n-1}$
- 13. A ball is dropped from 200 feet. On each bounce, the ball rises to a height three-fourths of the previous bounce. How far will the ball travel before it stops bouncing?
- 14. Find the sum of the infinite geometric series: $9 + 6 + 4 + \dots$
- 15. Find the first term in a geometric series where the sum of the first 7 terms is 21589 and the common ratio is 4.
- 16. Find the seventh term of the sequence defined by the recursive formula $t_n = 3t_{n-1} + 2$ with $t_1 = 4$.

17. Determine if each sequence is arithmetic, geometric, or neither. Justify your answer.

18. Given the explicit formula for the arithmetic sequence, find the first five terms and the 34th term.

$$a_n = -11 + 7n$$
 -4,3,10,17,24
 $a_{34} = 227$

19. Given $a_1 = 28$ and d = 10, find the first five terms and the explicit formula for the arithmetic sequence.

20. Given $a_{38} = -53.2$ and d = -1.1, find the first five terms and the explicit formula for the arithmetic sequence.

21. Given $a_1 = \frac{3}{5}$ and $d = -\frac{1}{3}$, find the recursive formula and the next three terms in the arithmetic sequence.

$$Q_1 = -13.4$$
 $Q_2 = Q_{22} + 0.6$
 $Q_3 = Q_{22} + 0.6$

 $\Omega_n = \Omega_{n-1} + 0.6$ 23. Given the explicit formula for the geometric sequence, find the first five terms and the 8th term.

$$a_n = 3^{n-1}$$
 $0, 3, 9, 27, 8$
 $0, 3, 9, 37, 8$

24. Given the recursive formula, find the common ratio, the first five terms, and the explicit formula for the geometric sequence.

$$a_n = a_{n-1} \cdot 2$$

 $a_1 = 2$
 $a_1 = 3$
 $a_1 = 3$
 $a_1 = 3$
 $a_1 = 3$
 $a_2 = 3$
 $a_1 = 3$
 $a_2 = 3$
 $a_1 = 3$

 $a_1 = 2$ $a_1 + 3$ $a_2 = 3$ $a_1 = 3$ $a_2 = 3$ $a_1 = 3$ $a_2 = 3$ $a_2 = 3$ 25. Given $a_1 = 0.8$ and $a_2 = 0.8$ and $a_2 = 0.8$ and $a_1 = 0.8$ and $a_2 = 0.8$ and $a_2 = 0.8$ and $a_2 = 0.8$ and $a_3 = 0.8$ and $a_4 = 0.8$ and $a_$

26. Given
$$a_1 = -4$$
 and $r = 6$, find the recursive formula and the next 3 terms for the geometric sequence.

- 26. Given $a_1 = -4$ and r = 6, find the recursive formula and the next 3 terms for the geometric sequence.

 27. Given $a_4 = 25$ and $a_4 = 25$, find the first five terms, the explicit formula and the recursive formula for the geometric sequence.

 28. Given $a_4 = 25$ and $a_5 = -5$, find the first five terms, the explicit formula and the recursive formula for the geometric sequence.

 28. Given $a_4 = 25$ and $a_5 = -5$, find the first five terms, the explicit formula and the recursive formula for the geometric sequence.

$$u_8 = \frac{3}{4}$$

$$u_1 = -\frac{1}{4}$$

$$u_2 = -\frac{1}{4}$$

$$u_3 = -\frac{1}{4}$$

$$u_4 = -\frac{1}{4}$$

$$u_4 = -\frac{1}{4}$$

$$u_5 = -\frac{1}{4}$$

$$u_7 =$$

- 28 Given $a_4 = -12$ and $a_5 = -6$, find the 8th term and the recursive formula for the geometric sequence.

 Partial Fractions

 29. Find the partial fraction decomposition: $\frac{5x+7}{x^2+2x-3} = \frac{2}{x+3} + \frac{3}{x-1}$
- 30 Find the partial fraction decomposition: $\frac{2}{x^3-64}$ $\frac{1}{24}$ $\frac{1}{24}$ $\frac{1}{24}$ $\frac{1}{24}$ $\frac{1}{3}$ $\frac{1}{24}$ $\frac{1}{24}$ $\frac{1}{24}$ $\frac{1}{3}$ $\frac{1}{24}$ $\frac{1}{3}$ $\frac{1}{24}$ $\frac{1}{3}$ $\frac{1}{3$

Limits (Algebraically)

Evaluate the following limits. If the limit does not exist, give the direction (if it has one).

31.
$$\lim_{x\to 0^{-}} \frac{1}{x}$$
 - ∞ 32. $\lim_{x\to 0^{+}} \frac{1}{x}$ ∞ 33. $\lim_{x\to 0} \frac{1}{x}$ DNE 34. $\lim_{x\to \infty} \frac{1}{x}$ \mathcal{O}

39.
$$\lim_{x\to 0} \frac{6x-9}{x^3-12x+3}$$

40.
$$\lim_{x\to 6} \frac{x+6}{x^2-36}$$
 DN1

39.
$$\lim_{x\to 0} \frac{6x-9}{x^3-12x+3} = 3$$
 40. $\lim_{x\to 6} \frac{x+6}{x^2-36}$ **DNE** 41. $\lim_{x\to -2} \frac{x^2-4x+4}{x^2+x-6} = -4$

43.
$$\lim_{x\to 9} \frac{9-x}{3-\sqrt{x}}$$

42.
$$\lim_{x\to\infty} 3$$
 43. $\lim_{x\to 9} \frac{9-x}{3-\sqrt{x}}$ 6 44. $\lim_{x\to 9} \frac{x^2-9}{x+3}$ -6

45.
$$\lim_{x \to 4} f(x)$$
, $f(x) = \begin{cases} \frac{1}{2}x - 1, & x \ge 4\\ 2x - 1, & x < 4 \end{cases}$

45.
$$\lim_{x \to 4} f(x)$$
, $f(x) = \begin{cases} \frac{1}{2}x - 1, & x \ge 4 \\ 2x - 1, & x < 4 \end{cases}$
46. $\lim_{x \to -2} f(x)$, $f(x) = \begin{cases} -x^2 + 4, & x > -2 \\ 3x + 6, & x < -2 \end{cases}$

Limits (Graphically)

Refer to the graph below to evaluate the following:

47.
$$\lim_{x \to 0^+} f(x)$$
 48. $-\infty$

48.
$$\underline{-\infty}$$
 $\lim_{x\to 0^-} f(x)$

49. DNE
$$\lim_{x\to 0} f(x)$$

50.
$$\frac{\partial}{\partial x} \lim_{x \to 0} f(x)$$

50.
$$\frac{\partial}{\partial x} \lim_{x \to 2^+} f(x)$$
 51. $\frac{1}{2} \lim_{x \to 2^-} f(x)$ 52. $\frac{DNE}{x \to 2} \lim_{x \to 2} f(x)$

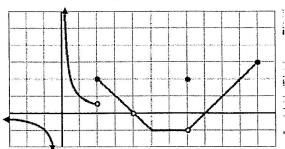
52. DNE
$$\lim_{x\to 2} f(x)$$

53.
$$\lim_{x \to 7^+} f(x)$$

53.
$$\lim_{x \to 7^{+}} f(x)$$
 54. $\lim_{x \to 7^{-}} f(x)$ 55. $\lim_{x \to 7} f(x)$

55.
$$\lim_{x \to 7} f(x)$$

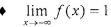
56. DNE
$$\lim_{x \to 11^+} f(x)$$
 57. $\lim_{x \to 11^-} f(x)$ 58. DNE $\lim_{x \to 11} f(x)$

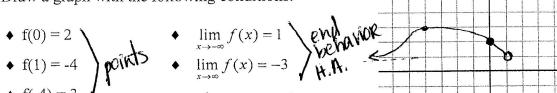

57.
$$3 \lim_{x \to 11^{-}} f(x)$$

58. DNF
$$\lim_{x \to 11} f(x)$$

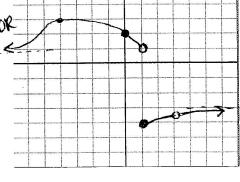
59.
$$O = \lim_{x \to 4} f(x)$$
 60. $O = \lim_{x \to 5} f(x)$ 61. $O = \bigcup_{x \to 5} f(x)$

60.
$$\lim_{x \to 5} f(x)$$


63.
$$DNE f(4)$$



65. Draw a graph with the following conditions:



- at f(1) there is a non-removable discontinuity
- at f(3) there is a removable discontinuity

-hole

