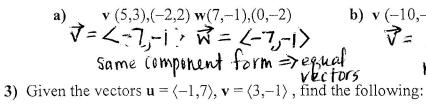
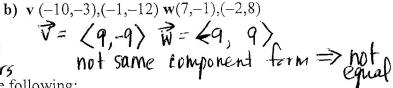

## Precalculus Unit 7

## Homework-Vectors in the Plane


1) Find and draw the vector v with initial point P and terminal point Q. Also find the magnitude of v.








2) Show work to determine if the vector v with initial point  $(p_1, p_2)$  and terminal point  $(q_1, q_2)$  is equivalent to vector w with initial point  $(r_1,r_2)$  and terminal point  $(s_1,s_2)$ 





- - (2,6)

a) u + v

- b) u vL-4,8)
- <-13,31>

c) 4u - 3v

\* will learn parts

e) projvu

- f) write **u** as the sum of 2 orthogonal vectors (one of which is proj<sub>v</sub>**u**)

(-3,1)

(-3,1)+ (2,6)

116.570

g) the angle between u an

4) Find a unit vector in the direction of the following vectors and show that it has length 1.

a) 
$$v = 8,-15\rangle$$

$$\left(\frac{8}{17}, -\frac{15}{17}\right)$$

b) 
$$v = \langle 3,0 \rangle$$

(c) 
$$\mathbf{v} = \langle -4\sqrt{2}, -2 \rangle$$

$$\left\langle -\frac{2\sqrt{2}}{3}, -\frac{1}{3} \right\rangle$$

5) Let u be the vector with initial point (1, -8) and terminal point (-1, -5) and let  $\mathbf{v} = 3\mathbf{i} - 4\mathbf{j}$ . Write the following as a linear combination of i and j.  $\checkmark$ u= (-2,3)

a) 
$$-2u$$

b)  $u-2v$ 
 $-2(-2,3) = \langle 4,-6 \rangle \quad \langle -2,3 \rangle - 2\langle 3,-4 \rangle$ 
 $\langle -2,3 \rangle + \langle -6,8 \rangle$ 
 $\langle -8,11 \rangle$ 

$$u-2v$$
 c)
$$\langle -2,3 \rangle - 2 \langle 3,-4 \rangle$$

$$\langle -2,3 \rangle + \langle -6,8 \rangle$$

$$\langle -8,11 \rangle$$

$$-8, +11$$

Write the vector v given its magnitude and direction angle.

**a)** 
$$|{\bf v}| = 6$$
  $\theta = 45^{\circ}$ 

**b)** 
$$|\mathbf{v}| = 12 \quad \theta = 240^{\circ}$$

c) 
$$|\mathbf{v}| = 10$$
  $\theta = \text{direction of } 6\mathbf{i} - 2\mathbf{j}$ 

$$\begin{array}{c}
(6,-2) \\
\text{magnitude} = \sqrt{40} = 2\sqrt{10} \\
\sqrt{10} \cdot \frac{b}{2\sqrt{10}}, 10 \cdot \frac{2}{2\sqrt{10}} \\
\sqrt{30} \cdot -\frac{10}{\sqrt{10}} \\
\sqrt{30} \cdot -\sqrt{10}
\end{array}$$

- 7) A plane is flying on a bearing of 295° at 360 mph. A wind is blowing with the bearing 320° at 38mph.
  - a) Write a vector (in component form) of the velocity produced by the airplane alone.



$$w = \left\langle -24.43, 29.11 \right\rangle$$

c) Write a vector (in component form) of the actual velocity of the plane.

$$v = \langle -350.70, 181.25 \rangle$$

d) Find the actual speed and direction angle (not the bearing) of the plane.

speed = 
$$394.77$$
mph  $\theta = 152.67^6$ 

speed = 394.77mph  $\theta = 152.67^6$ 8) A boat is traveling at a bearing of 95° at 25 mph for 2 hours, then it changes direction to a bearing of 135° for 3 hours. What is their bearing and distance from the original starting place?

9) Find the vector projection **u** onto **v**. Then write **u** as a sum of two orthogonal vectors, one of which is proj<sub>v</sub>**u** 

$$\mathbf{u} = \langle -5, -2 \rangle \& \mathbf{v} = \langle -11, 3 \rangle$$

$$proj_{v}u = \frac{\begin{pmatrix} -\frac{539}{130} & \frac{147}{130} \\ 130 & \frac{147}{130} \end{pmatrix}}{u = \frac{\begin{pmatrix} -\frac{539}{130} & \frac{147}{130} \\ 130 & \frac{147}{130} \end{pmatrix}}{130} + \frac{407}{130}$$