Precalculus Unit 5

Notes-Graphing Sinusoids

<u>Definition</u>: A function is a <u>**Sinusoid**</u> if it can be written in the form $\rightarrow f(x) = a \cdot \sin(bx + c) + d$ (where a, b, c, and d are constants and neither a nor b is 0) <u>**OR**</u> $f(x) = a \cdot \cos(bx + c) + d$

<u>Definition</u>: The <u>amplitude</u> of a sinusoid of the form $\Rightarrow f(x) = a \cdot \sin(bx + c) + d$ or $a \cdot \cos(bx + c) + d$ is $a \cdot \cos(bx + c) + d$ is $a \cdot \cos(bx + c) + d$.

<u>Definition</u>: The <u>Period</u> of a sinusoid of the form $f(x) = a \cdot \sin(bx + c) + d$ or $f(x) = a \cdot \cos(bx + c) + d$ is $f(x) = a \cdot \sin(bx + c) + d$ or $f(x) = a \cdot \cos(bx + c) + d$ is $f(x) = a \cdot \cos(bx + c) + d$.

Definition: The <u>frequency</u> of a sinusoid of the form $f(x) = a \cdot \sin(bx + c) + d$ or $f(x) = a \cdot \cos(bx + c) + d$ is <u>b</u>. Graphically, the frequency is the number of <u>complete cycles</u> in 2π radians

Things to keep in mind . . .

- The basic graphs of sine and cosine have a period of 2π .
- Changes in amplitude and period as well as phase shifts are nothing more than transformations you've seen before; they have just been given new names for trig functions.
 - > Changes in amplitude are vertical stretches or shrinks/compressions
 - > Changes in period are horizontal stretches or shrinks/compressions
 - > Phase shifts are horizontal (left or right) shifts
 - > These graphs can also be shifted vertically

Graphs of Sinusoids

The graphs of $y = a \sin(b(x - h)) + k$ and $y = a \cos(b(x - h)) + k$ (where $a \ne 0$ and $b \ne 0$) have the following characteristics:

amplitude =
$$|a|$$
;

period =
$$\frac{2\pi}{|b|}$$
;
frequency = $\frac{|b|}{2\pi}$

When compared to the graphs of $y = a \sin bx$ and $y = a \cos bx$, respectively, they also have the following characteristics:

a phase shift of h;

a vertical translation of k.

For the graphs of $y = A\sin(Bx - C) + D$ and $y = A\cos(Bx - C) + D$

- Amplitude = |A|
- Period = $\frac{2\pi}{|B|}$
- Phase Shift = $\frac{C}{R}$
- Vertical Shift = D
- Distance Between Key Points* = $\left(\frac{1}{4}\right) \cdot (\text{period})$

^{*}Key Points are the points that are at the top or bottom of the graph, or the points on the center-line of the graph

Here are examples of a single change to each of these elements for the basic sine graph.

Example 1 Find the amplitude of each of the following sinusoids & then use the language of transformations to describe how the graphs of b and c are related to a.

a)
$$f(x) = \cos x$$

amp = $\frac{1}{2}$

b)
$$y = \frac{1}{2}\cos x$$

 $amp = \frac{1}{2} = \frac{1}{2}$

c)
$$y = -3\cos x$$

 $amp = |-3| = 3$
Writical Stretch $+3$

vertical shrink * 1

Example 2 Find the period of each of the following sinusoids & then use the language of transformations to describe how the graphs of b and c are related to a.

$$a) \quad f(x) = \sin x$$

b)
$$y = 3\sin(-2x)$$

c)
$$y = -2\sin\left(\frac{x}{3}\right)$$

$$pd = \frac{2\pi}{|I|} = 2\pi$$

Example 3 Find the amplitude, period, and frequency of the function $f(x) = 4 \sin\left(\frac{2x}{3}\right)$. Sketch the graph.

$$per = \frac{2r}{|\frac{2}{3}|} = 3\pi$$

$$\frac{1}{4}(3\pi) = \frac{3\pi}{4}$$

Example 4 Find the amplitude, period, phase shift, vertical shift, and any reflection.

$$y = -2\cos 4\left(x + \frac{\pi}{4}\right)$$
 amp = $\left|-2\right| = 2$ p.s. = $-\frac{\pi}{4}$ left $\frac{\pi}{4}$

$$amp = |-2| = 2$$

$$y = -2\cos(4xtt)$$
 Per = $\frac{2\pi}{141} = \frac{\pi}{2}$ V.S. none reflection

Example 5 Find the amplitude, period, phase shift, vertical shift, and any reflection. Then graph one complete period.

A.
$$y = 3\sin(6\pi x)$$

$$amp = |3| = 3$$

$$|\text{per} = \frac{2\pi}{|\mathbf{G}_{\Pi}|} = \frac{1}{3}$$

$$v.s = none$$
 $refl = none$
 $B. y = -2 cos(x) + 3$

$$amp = |-2| = 2$$

$$per = \frac{2\pi}{111} = 2\pi$$

ps none
v.s. 3 (up 3)
reflower x-axis
c.
$$y=-3\sin\left(\frac{\pi}{2}x+\frac{\pi}{4}\right)-2$$

$$per = \frac{2\pi}{|\Xi|} = 2\pi \cdot \frac{2}{\pi} = 4$$

$$p.S. = \frac{\pi}{4} = \frac{-\pi}{4} \cdot \frac{2}{\pi} = \frac{-1}{2}$$

$$\frac{1}{4}(\frac{1}{3})=\frac{1}{12}$$

