<u>Definition</u>: A <u>Sequence</u> is an ordered progression of numbers. This progression can be finite (meaning it ends), for example {3, 6, 9, 12, ..., 21}. Or, it can be infinite, for example $\{3, 6, 9, 12, \ldots\}$.

Notation: a_n is used to denote a term in a sequence. The a alone actually has nc value, however the n has a very significant meaning. It indicates the place of the term in the sequence being referred to.

can find one There are 2 ways to define these sequences have to know the previous term to get the next term

The **explicit definition** is like a formula.

Ex1) Find the first four terms of the given sequence.

$$a_n = 2n + 3$$

b)
$$a_n = 3 \cdot 2^n$$

c)
$$a_n = n + \frac{1}{n}$$

$$\frac{5}{a_1}$$
, $\frac{7}{a_2}$, $\frac{9}{a_3}$, $\frac{1}{a_4}$

$$\frac{6}{a_1}$$
, $\frac{12}{a_2}$, $\frac{24}{a_3}$, $\frac{48}{a_4}$

$$\frac{2}{a_1}$$
, $\frac{2.5}{a_2}$, $\frac{3\frac{1}{3}}{a_3}$, $\frac{4\frac{1}{4}}{a_4}$

d)
$$a_n = n^3 + 1$$

e)
$$a_n = 3 - 7n$$

f)
$$a_n = (-2)^n$$

$$\frac{2}{a_1}, \frac{9}{a_2}, \frac{10}{a_3}, \frac{15}{a_4}$$

$$\frac{-4}{a_1}, \frac{-11}{a_2}, \frac{-18}{a_3}, \frac{-25}{a_4}$$

$$\frac{2}{a_1}, \frac{9}{a_2}, \frac{28}{a_3}, \frac{65}{a_4}$$
 $\frac{-4}{a_1}, \frac{-11}{a_2}, \frac{-18}{a_3}, \frac{-75}{a_4}$ $\frac{-2}{a_1}, \frac{4}{a_2}, \frac{-8}{a_3}, \frac{16}{a_4}$

The **recursive definition** has 2 parts:

- (1) a term with which to begin
- (2) a symbolic description of how the successive terms are related.

Ex2) Find the indicated terms of the given sequence.

a)
$$a_1 = 6$$
, $a_n = 4 + (a_{n-1}) = 7$ Previous b) $a_1 = 9$, $a_n = \frac{1}{3} \cdot a_{n-1}$ c) $a_1 = 1$, $a_2 = 2$, $a_n = a_{n-1} + a_{n-2}$

c)
$$a_1 = 1, a_2 = 2, a_n = a_{n-1} + a_{n-2}$$

$$\frac{10}{a_2}$$
, $\frac{14}{a_3}$, $\frac{18}{a_4}$, $\frac{22}{a_5}$

$$\frac{2}{a_2}$$
, $\frac{3}{a_3}$, $\frac{5}{a_4}$, $\frac{8}{a_5}$

d)
$$a_1 = 4$$
, $a_n = 5 \cdot a_{n-1} + 2$

e)
$$a_1 = 1$$
, $a_n = \left(-\frac{1}{3}\right)^n \cdot a_{n-1}$

d)
$$a_1 = 4$$
, $a_n = 5 \cdot a_{n-1} + 2$ **e)** $a_1 = 1$, $a_n = \left(-\frac{1}{3}\right)^n \cdot a_{n-1}$ **f)** $a_1 = 1$, $a_2 = 2$, $a_n = a_{n-1} \cdot a_{n-2}$

$$\frac{22}{a_2}, \frac{112}{a_3}, \frac{562}{a_4}, \frac{281}{a_5}$$

$$\frac{22,112,562,2812}{a_2,a_3} = \frac{\frac{1}{9},\frac{1}{243},\frac{1}{1963}}{a_2,a_3} = \frac{2}{a_2},\frac{2}{a_3},\frac{4}{a_4},\frac{8}{a_5}}{a_2}$$

$$\frac{2}{a_2}$$
, $\frac{2}{a_3}$, $\frac{4}{a_4}$, $\frac{8}{a_5}$

Although it is possible to work with many different types of sequences, there are 2 that are most common.

(where there is a common ratio between each pair of terms).

ARITHMETIC:

 $a_n = a_1 + d(n-1)$, where d is the difference between each term (called the common difference)

Ex3) State whether each sequence is arithmetic, geometric, or neither. Then, find an explicit formula for the *n*th term of the sequence in terms of *n*.

type:
$$a_n = \sqrt{7 + 4(n-1)}$$

b)
$$8, 12, 18, 27, \dots$$
 c) $\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \dots$

type: geometric type: neither
$$a_n = \frac{\partial \left(\frac{3}{2}\right)^{n-1}}{\partial a_n} \qquad a_n = \frac{n}{n+1}$$

$$a_n = \frac{n}{n+1}$$

d) 11, 101, 1001, 10001, ...

$$a_n = 10^n + 1$$

e)
$$100, -50, 25, -12.5,...$$

 $r = -\frac{1}{2}$

g)
$$\frac{2}{1}, \frac{3}{4}, \frac{4}{9}, \frac{5}{16}, \dots$$

g)
$$\frac{2}{1}, \frac{3}{4}, \frac{4}{9}, \frac{5}{16}, \dots$$
 h) $2a - 2b, 3a - b, 4a, 5a + b, \dots$

type: geometric
$$a_n = 100 \left(-\frac{1}{2}\right)^{n-1}$$

type: heither

$$a = h^2$$

type: arithmetic
$$a_n = \frac{7a-2b+(a+b)(n-1)}{a+b}$$

Ex4) State whether each sequence is arithmetic, geometric, or neither. Then, find an explicit formula for the *n*th term of the sequence in terms of *n*.

a)
$$a_1 = 8$$
, $a_n = \frac{1}{2} \cdot a_{n-1}$
 $8, 4, 2, 1,$
type: Geometric
 $a_n = 8(\frac{1}{2})^{n-1}$

d)
$$a_1 = 1$$
, $a_n = a_{n-1} + 2n - 1$
 $a_1 = 1$, $a_2 = a_{n-1} + 2n - 1$
type: Neither
$$a_n = n^2$$

b)
$$a_{1} = 6$$
, $a_{n} = a_{n-1} + 10$

6, 16, 26, 36, ...

type: arithmetic

$$a_n = 6 + 10(n-1)$$

c)
$$a_1 = \frac{1}{2}$$
, $a_n = \frac{n}{n+1}(a_{n-1}+1)$
 $\frac{1}{2}$, $\frac{1$

e)
$$a_1 = 3$$
, $a_n = -2 \cdot a_{n-1}$
 $3, -6, 12, -24, ...$
type: geometric
 $a_n = 3(-2)^{n-1}$

f)
$$2^{\frac{2}{3}}, 2^{\frac{5}{3}}, 2^{\frac{8}{3}}, \dots$$
 $2^{\frac{2}{3}}, 2^{\frac{1}{3}}, 2^{\frac{5}{3}}, 2^{\frac{1}{3}}$

type: Geometric

$$a_n = \frac{2^{\frac{1}{3}}}{2^{\frac{1}{3}}} (2)^{h-1}$$

Ex5) Find the indicated term of each arithmetic sequence: $\mathbf{a} = \mathbf{b}$ a) $a_1 = 15$, $a_2 = 21$, $a_{20} = \mathbf{b}$ b) $a_1 = 15$, $a_2 = 7$, $a_{20} = \mathbf{c}$

a)
$$a_1 = 15$$
, $a_2 = 21$, $a_{20} = ?$

b)
$$a_1 = 15$$
, $a_2 = 7$, $a_{20} = 9$

$$\begin{array}{c} d=6 \\ Q_{1}=Q_{1}+d(N-1) \\ Q_{20}=15+6(20-1)=129 \\ \hline Q_{20}=129 \end{array}$$

$$\begin{array}{c} Q_{20}=15+-8(20-1) \\ \hline Q_{20}=137 \end{array}$$

$$Q_{20} = 15 + -8(20 - 1)$$
 $Q_{20} = -137$

a)
$$18, 24, ..., 336$$
 $a_1 = 18$ $a_2 = 336$ $a_3 = 6$

b) 178, 170, ..., 2
$$q = 120$$

$$336 = 18 + 6(n-1)$$

 $318 = 6(n-1)$
 $53 = n-1$ $n = 54$

Ex6) How many terms are in the finite arithmetic sequence
a) 18, 24, ..., 336
$$a_1 = 18$$
 $a_1 = 18$ $a_2 = 18$ $a_3 = 18$ $a_4 = 18$ $a_5 = 18$ $a_6 = 1$

$$35, 42, ..., 294$$

$$294 = 35 + 7(n-1)$$

$$259 = 7(n-1)$$

$$37 = n-1$$

$$h = 38$$

Geometric Sequence: $a_n = a_1(r)^{n-1}$, where a_n is the *n*th term, r is the common ratio, & a_1 is the 1st

Ex8) Write an explicit representation of the pattern. Then find the 15th term.

$$\frac{1}{243}$$
, $\frac{1}{81}$, $\frac{1}{27}$, $\frac{1}{9}$,...

$$a_n = \frac{1}{243} (3)^{n-1}$$
 $a_n = \frac{1}{243} (3)^{15-1} = 19(683)$

Ex9) Given that $a_2 = 3$ & $a_5 = 24$ write an explicit formula if the sequence is a) arithmetic & b) geometric. Then find the values of a_3 , and a_4 in each situation.

a)
$$-\frac{4}{3}$$
, $\frac{10}{3}$, $\frac{17}{12}$, $\frac{24}{3}$
 $A = \frac{24-3}{3} = \frac{21}{3} = 7$

b)
$$\frac{3}{2}$$
, 3, 6, 12, 24.
 $3 \cdot r^3 = 24$
 $r^3 = 8$
 $r = 2$

$$a_n = \underline{-4 + 7(n-1)}$$

$$r = 2$$

$$a_n = \frac{3}{2}(2)$$

$$a_3 = 10 \quad a_4 = 17$$

$$a_3 = 6$$
 $a_4 = 12$

(These are called the Arithmetic means between $a_2 \& a_5$)

(These are called the Geometric means between $a_2 \& a_5$)