Applications of Integrals Review

1.

Find the area under the curve $y=2 x-x^{2}$ from $x=1$ to $x=2$ with $n=4$ left-endpoint rectangles.

Find the area under the curve $y=2 x-x^{2}$ from $x=1$ to $x=2$ using the Trapezoid Rule with
2. $n=4$.

Find the area under the curve $y=2 x-x^{2}$ from $x=1$ to $x=2$ using the Midpoint Formula with
3. $n=4$.
4. Find the area under the curve $y=2 x-x^{2}$ from $x=1$ to $x=2$.
5.

Find the average value of $f(x)=4 x \cos x^{2}$ on the interval $\left[0, \sqrt{\frac{\pi}{2}}\right]$.
6. Find the average value of $f(x)=2|x|$ on the interval $[-1,1]$.
7. Find the length of the curve described by the parametric curve:

$$
x=\cos t \text { and } y=\sin t \text { from } t=\frac{\pi}{6} \text { to } t=\frac{\pi}{3}
$$

8. Find the length of the curve described by $x=\frac{y^{3}}{18}+\frac{3}{2 y}$ from $\mathrm{y}=2$ to $\mathrm{y}=3$.
9. Find the slope of the curve $r=2 \cos 4 \theta$.
10. Find the slope of the curve $r=2-3 \sin \theta$ at $(2, \pi)$.
11. Find the area inside the limaçon $r=4+2 \cos \theta$.
12. Find the area inside $r=2 \cos \theta$ and outside $r=1$.
13. Find the area inside the lemniscate $r^{2}=6 \cos 2 \theta$ and outside the circle $r=\sqrt{3}$.

Applications of Integrals Review

Free Response (You may use a calculator on these problems)

1. An object moving along a curve in the $x y$ plane has its position given by $\langle x(t), \mathrm{y}(\mathrm{t})>$ at time t seconds, $0 \leq t \leq 1$, with $\frac{d x}{d t}=8 t \operatorname{cost}$ units $/ \mathrm{sec}$ and $\frac{d y}{d t}=8 t s i n t$ units $/ \mathrm{sec}$. At time $\mathrm{t}=0$, the object is located at $(5,11)$.
a. Find the speed of the object at $t=1$
b. Find the length of the arc described by the curve's position from $t=0$ to $t=1$.
c. Find the location of the object at $t=\pi / 2$
d. Find $d y / d x$ \& Find $d^{2} y / d x$
2. Two particles travel in the $x y$-plane. For time $t \geq 0$, the position of particle A is given by $x(t)=t+1$ and $y(t)=(t+1)^{2}-2 t-2$, and the position of particle B is given by $x(t)=4 t-2$ and $y(t)=-2 t+2$
a. Find the velocity vector for each particle at time $t=2$
b. Set up an integral expression for the distance traveled by particle A from time $t=1$ to $t=3$. Do not evaluate the integral.
c. At what time do the two particles collide? Justify your answer.
d. Sketch the path of both particles from time $t=0$ to $t=4$. Indicate the direction of each particle along its path.

Answers.

$1.25 / 32$	$2.21 / 32$	$3.43 / 64$	$4.2 / 3$	
5. $2 \sqrt{2 / \pi}$	6.1	$7 . \pi / 6$	$8.47 / 36$	
$9 . \frac{4 \sin 4 \theta \sin \theta-\cos 4 \theta \cos \theta}{4 \sin 4 \theta \cos \theta+\cos 4 \theta \sin \theta}$	$10.2 / 3$	11.18π	$12 \cdot \pi / 3+\sqrt{3} / 2$	
$13 . \frac{3 \sqrt{3-\pi}}{2}$				

\#1
a) 8
b) 4
c) $(4 \pi-3,19)$
d) $d y / d x=\tan t$

$$
d^{2} y / d x=\sec ^{3} t /(8 t)
$$

\#2
a) Particle $\mathrm{A}<1,2 \mathrm{t}>\quad$ Particle $\mathrm{B}<4,-2>$
b) $\int_{1}^{3} \sqrt{1+4 t^{2}} d t$
c) At $t=1$
d)

